
Autonomic Comosable Data Center

(ACDC): The Next Generation

Paradigm for Developing Large Scale

Data Centers

Salim Hariri, Director

NSF Center for Cloud and Autonomic Computing

The University of Arizona

nsfcac.arizona.edu

email: hariri@ece.arizona.edu

Presentation Outline
Brief Overview of Ongoing CAC Research Activities
Motivation – Why Composable Data Centers?
What are challenges of Designing Composable Data Centers

UA Approach to Build a Composable System:
– Just iIn Time Architecture (JIA)

– Prelinary Analysis and Evluation

Conclusions

• Autonomic Cyber Security (ACS)
– Tactical Cyber Immune System (TCIS)
– Autonomic Monitoring, Analysis and Protection (AMAP)
– Anomaly based Detection of Attacks on Wireless Ad Hoc Networks
• Resilient Cloud Services
• Hacker Web: Securing Cyber Space: Understanding the Cyber Attackers

and Attacks via Social Media Analytics

• IoT Security Framework
• Big Data Analytics

• Big Data Cybersecurity
• High Performance Machine Learning Framework (HPMLF)
• Heart Modeling, Analysis, Diagnosis and Prediction

• High Performance Distributed Computing and Applications
– Just-In-Time Architecture (JITA) for Composable High Performance Data Centers
– Heart Cyber Expert System (HeartCyPert)
– Oil Well Data Analytics and Protection (OWDAP)
– Hurricane Continuous Modeling and Simulation Environment

On Going UA CAC Projects

Credit to

Dr. Chung-Sheng Li
IEEE Fellow &
IBM Academy of Technology Leadership Team
Director, Commercial Systems
IBM Research Division

55

Composable
Systems

Software
Defined
Environm
ents

Homogene
ous,

Virtualized

Cloud 1.0 Cloud 2.0

Cloud evolution – systems point of view

Systems of Insight
workloads often have
wide spectrum of memory
requirements

Systems of Insight
workloads create high
east-west datacenter
traffic

Systems of Insight
workloads often
require large, low
latency storage

Required Memory (GB)
To

ta
l C

PU
 T

im
e(

ho
ur

s)

1

10

100

1000

0 50 100 150 200 250

§ Locally attached SSD &
storage could be inflexible
and expensive

§ Remotely attached storage incur
long latency and throughput
bottleneck

A A

~5:1

A A A

S S S

S

S S

S

S

AR AR

CRCR

A A A A A A

~40:1

~200:1

S

S

ARAR

S

A

S t o r a g eI/
O

CPU Memo
ry

I/
O

CPU Memo
ry

SLOW

Server

Cloud 3.0

6

Composable systems take advantage of rapid progress on
network speed and acceleration

High bandwidth network and interconnect
speed is expected to be comparable to
PCIe speed by 2015-2017

Increased focus on east-west traffic
accelerate adoption of 2-tier (spine-leaf)
and 1-tier DCN architectures

High speed network enables storage disaggregation
with zero penalty to performance

1 Gbps

10 Gbps

40 Gbps
100 GbpsPCIE Gen 1

PCIE Gen 2
PCIE Gen 3

2000 2005 2010 2015
0.1

1

10

100

1000

Network compared with System I/O

I/O

Ethernet

Gbp
s

Network Design Choices

§ O ptim ized for Scale & G row th –
C loud M odel

§ O ne netw ork for a ll Apps /
Tenants

§ All nodes are equi-d istant: 3-
hops

§ O ptim ized for sm aller
c lusters

§ O ne netw ork per Application
§ All nodes are d irectly

connected: 1 H op

SAS/SA
TA

SSDI/OCPU Memory I/O

<1 U S latency
56G b/s R D M A/R oC E

FASTER

I/O

2-Tier Leaf-Spine 1-Tier Spline

7

Self-tuning could
achieve 75% of optimal
performance within
minutes

JBOD

Disaggregated fully
non-blocking spine-leaf
data center network
based on SDN is
available now (2014)M axeler FPG A

A ccelerator
(FSS, N atural
R esources)

TM S SSD
(FSS, IoT)

G PU
(G enom ics,

H ealthcare) High BW, Low
Latency Network
and Interconnect

Hyper-converged /
Disaggregated
Components

Self tuned & Self Optimized

Datacenter Scale
�Computer�

Software Defined Infrastructure
Resource Abstractions for Composable

Systems

P8-CAPI (coherent insertion of
accelerators)

A ctive Storage (hyperconverged) N ode

P7/P8
CPU

FPGA

Flash, MRAM, PCM

10GbE

AS
Net

SAS/
SATA

DRAM

Building Blocks for Composable
System

Innovation platform: Agile, composable, disaggregated,
heterogeneous, cloud-scale

High bandwidth Si
Photonics links for
east–west direct
connections rewired
using optical switches

Enabled by significant reduction in cost of bandwidth and virtualization advances.

7

Why Disaggregation?
Resource Modularity

§ Easier to build & evolve
– Resources have different

cycles/trends/constraints.
– Disaggregation enables independent evolution,

the biggest driving force from vendor’s viewpoint

§ Fine-grained resource provisioning
– Current practice: replace/buy an entire server,

rack, or even datacenter.
– Go buy some CPU blades at Best Buy® and

plug them in.

§ Operational efficiency
– Datacenter as a single giant computer
– Higher utilization with statistical multiplexing

§ Reduces the need to optimize for “locality” of data to
processing and hence lessens the need for careful
placement of data & workload

§ Physical resource pooling: allows fail in place
and reduce/lessen the need for field maintenance
(especially when coupled with software defined
everything)

G G
G M

M

Datacenter
Network

C C

IOH

MM

NIC

C C

IOH

MM

NIC

Server 1 Server N

…

M
Storage

Devices
Shared distributed

GPUs
Shared distributed

Memory

Traditional Datacenter

Fully Disaggregated Datacenter

Partially Disaggregated
Datacenter

9

What are the challenges?

§Network: How fast should the network be? How much latency
could workload tolerate?

§Scalability: What is the right (sweet spot) scale of the
disaggregation? (chassis, rack, pod, datacenter)

§Quality of Service/Resiliency: What is the impact on the RAS?
Are there new opportunities resulting from physical resource
pooling?

§Circuit switching vs. Packet Switching: Can we leverage
optical circuit switching (OCS)?

§Unified control plane/scheduler: How can we make sure the
scheduling and placement of workload do not create conflicting
data flow within the network due to disaggregation?

10

What are the appropriate interconnect technologies for
disaggregation?

11

Intra Pod &
Intra Datacenter

Network

C PU

C PU

C PU

SSD

SSD

SSD

• Amdahl’s rule of thumb: every MHz of CPU
needs to pair with 1 Mb/s of I/O

• 16 core @2.5GHz è 40 Gb/s
• 32 core @2.5GHz è 80 Gb/s
• SSD: 100K+ IOPS, 100 us access
latency (cf. HDD: 50 IOPS, 10ms
access latency)

• Implications: 1000 VMs require 40 Tb/s
bisection, 10 us access latency (port to port)

• MapReduce/Hadoop and large graph
implementations within BigData, Analytics,
and NoSQL generate large volume of east-
west traffic among Hadoop clusters

• Cross-sectional BW: Azure Pb/s, GCE 100
Tb/s

Amin Vahdat (Google) in his keynote at 2014 Open Network Summit
presented the case that the cross-sectional BW needs to be 100+ Tb/s and
end-to-end latency < 10 us to support disaggregated SSD and large
MapReduce workloads

Network requirements: Cross-sectional BW: 100+ Tb/s, end-to-
end latency < 10 us

12

• Hardware based, transparent to applications

and OS/hypervisor

• Access as an I/O device based on direct

integration through PCIe over Ethernet

• Global shared memory for disaggregated

memory

• Direct attached memory through Centaur

(Power), CAPI (Power), and QPI (Intel)

• Hypervisor/container based: transparent to

applications and guest OS

• getMemory: e.g. remote swap RamDisk

• getGPU: e.g. through PCIe over Ethernet

• Microservice/Application based: expose disaggregation

details and resource remoteness directly to applications

• Resources exposed via high-level APIs (e.g. put/get

for memory) using built-in processing element

• GetMemory (e.g. Memory as a Service) as

one of the OpenStack service

• Openstack service sets up channel

between host and memory pool service

over RDMA.

• GetGPU instance

• Locate available GPU from GPU pool &

host from host pool

• Establish channel between host and

GPU through RDMA/PCIe and expose to

applications via library or virtual device.

• Cloud-born applications already built using such APIs

Transparent to

app/OS/hypervisor

Transparent to app

(e.g. Swap

RamDisk, RDMA)

RAMCloud

Memory as a

Service, Flash as

a Service
Cloud (e.g.
OpenStack)

OS

Hypervisor

Bare Metal

Application & Service
API

G G G M
M

Datacenter Network

C C

IOH

MM

NIC

C C

IOH

MM

NIC

Server 1 Server N

…

M
Storage
Devices

Shared
distributed GPUs

Shared
distributed
Memory

Partially Disaggregated Datacenter

Integration Methodology for Disaggregated Physical Resource in
the system Stack

UA Approach to Develop
Composable Datacenters:

JITA – Just in Time
Architecture

Collaborators
UA: Ali Akoglu, Ivan Djordjevic, and Cihan Tunc
Colorado State University: H. J. Siegel

Research Issues
How to build disaggregated or composable data

centers on the fly?
How to develop software architecture and resource

management that can be customized dynamically to meet
application SLO?
– Virtual Data Center (VDC)

How to leverage emerging optical interconnect
technologies?

How to model and validate the performance of
composable data centers?

JITA Technologies and Tools

Now

Resource

•Compute
•Network

•Storage

App App App

Resource

•Compute
•Network

•Storage

Resource

•Compute
•Network

•Storage

Dedicated Resources

HPC Technologies & Tools Autonomics

Complex HPC Applications & Resources

Programming systems (MapReduce,
MPI,CCA, OpenMP)

Partitioning and load-
balancing

Monitoring and profiling

Self-healing

Self-optimizing

Dynamic

provisioning

Dynamic performance

optimization

Fault tolerance & recovery

Coupled
Multiphysics &
Multiscale

Fusion Simulations
Stockpile stewardship
Nuclear Simulations
Earth and Weather SciencesLarge Scale (exascale)

Compute/Data Intensive

Data management

Job allocation and
scheduling

Big Data analytics

JITA Systems

Workflows

Self-Protection

Detect and respond to

attacks

Self-Configuration

Virtualization

Research Thrusts

Thrust 1: JITA Design Approach
Thrust 2: Optical Interconnect Infrastructure

Thrust 3: Modeling, Analysis, and Simulation of JITA

Thrust 1: JITA Design
Approach

18

Just-In-Time Architecture (JITA)

Storage

HP
S

GPUsStorag
e

CPUs Memory

H P

S
G P U sS torage C P U s Memory

C
ross Layer Autonom

ic
M

anagem
ent

JITA Example HP Systems

Scalable Architecture

Autonomic Computing

Analogous to Human
autonomic nervous
system

AC continuously
monitors, analyzes, and
diagnoses the managed
system behavior and
then takes proactive
actions

Autonomic Component Architecture

Controller

Observer

Anomaly Sensors

Knowledge

Packet Sensor AflowSensor

Analyzers

TACTIC-
D

Network
BAU

Transport
BAU

DNS
BAU

HTTP
BAU

ModBus
BAU

Group Policy 1

Group Policy 2

Group Policy N

Policy 1 Action M1

Action N1
Policy 2 Action M2

Action N2

Policy 3 Action M3

Action N3

Policy Y Action MY

Action NY
Policy X Action MX

Action NX
Policy Z Action MZ

Action NZ

Cross-layer Autonomic Management

23

Value of Service (VoS)

• Utility functions have been shown to be effective metrics in
resource management, especially in an oversubscribed
environment.

• A primary difference of our VoS metric from utility techniques is
the fact that the value metric allows us to consider the value of
performing resource management at a particular time of the day or
night as well as the actual operational costs of using the allocated
resources at a given time.

VoS Examples
Value of Service (VoS) with respect to Performance and

energy

25

Energy value vs energy consumed
(a) Peak time, (b) Non-peak time

JITA Scheduling Algorithm

26

Our algorithm is based on the resource allocation choices that provide the highest task
value divided by the amount of resources used, to better utilize the resources
Maximum Value-per-Total Resource (Maximum VPTR).

Algorithm 1. Pseudo-code for the Max VPTR heuristic.
1. while the set of mappable tasks is not empty
2. for each task in the set of mappable tasks
3. find the allowable VM configuration maximizing task VPTR
4. select task/VM pair that gives the highest VPTR
5. if selected task can start execution immediately
6. then
7. assign selected task to VMs
8. else
9. create a place-holder for selected task using its resource allocation choice
10. remove selected task from mappable tasks
11. end while

JITA Scheduling Simulation
Results

27

The percentage of maximum VoS earned by
the heuristics in environments where the
number of cores in the system is varied from 128
to 384 and the amount of memory is fixed at 256
GB.

The percentage of maximum VoS earned by the
heuristics in environments where the amount of
memory in the system is varied from 128 to
384 GB and the number of cores is fixed at
256.

JITA Experiment Results

28

JITA Experimental Results

29

Total task execution time for workload
1 (thousand seconds).

Total energy consumption by the executed
tasks for workload 1 (in Mega Joules)

Thrust 2: Optical
Infrastructure Design

Approach

Optical Cell Design

Optical waveguides

Active vertical coupler (AVC)

Input

Output

Switching cell operation principle

Optical Space Switch

JITA Optical Interconnect

End of Row (EoR) Topology

Optical End of Row (OEoR) Topology

StorageServer

Optical Top of Rack (OToR) Topology

StorageServer

Performance Modeling, Analysis
and Simulation

3
8

38

47 minutes

27 minutes

22 minutes

19 minutes

15 minutes

13 minutes
48 seconds
(on p730)

Bottleneck
CPU

Disk IO

Memory

Disk IO

CPU/Mem
ory, but
software
stack
inefficent

8 minutes
44 seconds
(on 7R2)

7 minutes
50 seconds
(on 7R2)

6 minutes
41 seconds
(on 7R2)

CPU/
Memory

CPU/
Memory

Summary: Composable datacenter scale systems expose
many more system knobs and need to be self-optimized

02/10/2012

07/03/2012

02/05/2013

04/15/2013

Manual optimization of Terasort took
18 months

Self-tuning could achieve 75% of
optimal performance within minutes

Source: Duke Univ.

Many areas requires
performance tuning

§ Hardware Configurations

CPU & Cache
– Adopt SMT4 for Terasort
– Prefetch from

L2/L3/memory to D-L1
– Large on-chip cache, memory and IO

bandwidth
§ Storage

– Software RAID over
LVM to reduce storage layer overhead

– Symphony round-robin
scheduling algorithm to
utilize disk arrays

§ JVM
– GC and jitting policy
– Heap size
– Enable Huge Page

§ Platform Symphony– Buffer related to reduce
IO

– Smart scheduling
– Task granularity– Resource Allocation

§ Compression Algorithm
– Gzip à LZO

àSNAPPY àLZ4

39

DoD Applications Requirements & Capabilities
+

OS Resource Requirements & Capabilities
+

Service Level Objectives

Workload Profiler &
Management Console

Storage Compute/MemoryNetwork

Application
workload
request

VDMS
offer

VDMS
offer
accepted

VDMS
configured
and ready

Workload provisioned

VD C aggregated &
launched

API

1

2

3

4

5

6

Decision Making System Resources Pool

7
monitors & customize
VDMS resources as
needed to enforce policies

A
pp

OS

Cross-layer Autonomic Management
• Aggregation
• Orchestration
• Policy enforcement

JITA Example Workload Profile

Conclusions
Autonomic computing can paly an important role in

designing composable data centers
Software Defined Infrastructures are a key technology to be

leveraged in the development of software architecture and
middleware

Optical Interconnect technology must be leveraged
Automated configuration and tuning are key design

parameters

Questions?
Contact Dr. Hariri at

hariri@ece.Arizona.edu

